A Practical Guide to Data Mining for Business and Industry

Author: Andrea Ahlemeyer-Stubbe,Shirley Coleman

Publisher: John Wiley & Sons

ISBN: 1118763378

Category: Mathematics

Page: 328

View: 1049

Data mining is well on its way to becoming a recognized discipline in the overlapping areas of IT, statistics, machine learning, and AI. Practical Data Mining for Business presents a user-friendly approach to data mining methods, covering the typical uses to which it is applied. The methodology is complemented by case studies to create a versatile reference book, allowing readers to look for specific methods as well as for specific applications. The book is formatted to allow statisticians, computer scientists, and economists to cross-reference from a particular application or method to sectors of interest.

Making Sense of Data

A Practical Guide to Exploratory Data Analysis and Data Mining

Author: Glenn J. Myatt

Publisher: John Wiley & Sons

ISBN: 0470101016

Category: Mathematics

Page: 288

View: 6666

Predictive Data Mining

A Practical Guide

Author: Sholom M. Weiss,Nitin Indurkhya

Publisher: Morgan Kaufmann

ISBN: 9781558604032

Category: Computers

Page: 228

View: 7954

This book presents a unified view of data mining, drawing from statistics, machine learning, and databases and focuses on the preparation of data and the development of an overall problem-solving strategy. It will interest researchers, programmers, and developers in knowledge discovery and data mining in the disciplines of AI, software engineering, and databases.

Java Data Mining: Strategy, Standard, and Practice

A Practical Guide for Architecture, Design, and Implementation

Author: Mark F. Hornick,Erik Marcadé,Sunil Venkayala

Publisher: Elsevier

ISBN: 9780080495910

Category: Computers

Page: 544

View: 953

Whether you are a software developer, systems architect, data analyst, or business analyst, if you want to take advantage of data mining in the development of advanced analytic applications, Java Data Mining, JDM, the new standard now implemented in core DBMS and data mining/analysis software, is a key solution component. This book is the essential guide to the usage of the JDM standard interface, written by contributors to the JDM standard. Data mining introduction - an overview of data mining and the problems it can address across industries; JDM's place in strategic solutions to data mining-related problems JDM essentials - concepts, design approach and design issues, with detailed code examples in Java; a Web Services interface to enable JDM functionality in an SOA environment; and illustration of JDM XML Schema for JDM objects JDM in practice - the use of JDM from vendor implementations and approaches to customer applications, integration, and usage; impact of data mining on IT infrastructure; a how-to guide for building applications that use the JDM API Free, downloadable KJDM source code referenced in the book available here

Business Intelligence in Plain Language

A Practical Guide to Data Mining and Business Analytics

Author: Jeremy M. Kolb

Publisher: CreateSpace

ISBN: 9781479324187

Category: Business intelligence

Page: 66

View: 1919

One day a man walked into Asgard Inc. and changed the company forever. Unlike anyone who came before, he remembered and understood data as naturally as a fish swims in water. The CEO was shocked at how well the man knew the company. He started posing questions to this man. Who are my best customers? Why is this product struggling? Where is my greatest growth happening? The man answered these and more. Using his understanding of data, he identified key new markets, he discovered the best places to invest capital, and he even predicted the future. Overnight Asgard Inc. changed. Where before the CEO relied on limited information and gut feelings, now true knowledge guided his actions. The CEO took the man's hand in gratitude and asked, "Who are you?" and he replied, "I am Business Intelligence." Business Intelligence(BI) is shrouded in mystery for a lot of us but it doesn't need to stay that way. Business Intelligence in Plain Language is a systematic exploration of this complicated tool. I'll teach you about what it does, how it works, and most importantly how you can benefit from it. In this book you will learn about: Business Intelligence Data Mining Data Warehousing Data Discovery Big Data Outlier Detection Pattern Recognition Predictive Modeling Data Transformation and much more This book is your practical guide to understanding and implementing Business Intelligence.

Handbook of Statistical Analysis and Data Mining Applications

Author: Robert Nisbet,Gary Miner,Ken Yale

Publisher: Elsevier

ISBN: 0124166458

Category: Mathematics

Page: 822

View: 4283

Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. Includes input by practitioners for practitioners Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models Contains practical advice from successful real-world implementations Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications

A Practical Guide to Planning for E-Business Success

How to E-enable Your Enterprise

Author: Anita Cassidy

Publisher: CRC Press

ISBN: 1420025481

Category: Business & Economics

Page: 256

View: 9041

News of the Web's demise has been greatly exaggerated. The Internet continues to impact our lives and how we do business. It has the power to transform entire industries and create new ones, challenge industry leaders, and enable businesses in entirely new ways. The question is no longer will you participate in the Internet revolution, but when and how. Rather than talking Internet hype, A Practical Guide to Planning for E-Business Success shows you how to do it - and do it right - from beginning to end. The only thing worse than no e-business presence is a bad e-business presence. Well-known authority Anita Cassidy explores using Internet technology to redefine and enable your business in entirely new ways. She provides a step-by-step process for developing and implementing a solid e-business strategy. She gives you examples, checklists, FAQs, and templates that help you begin and steer you in the right direction. Research shows that despite the dot.com bust e-commerce is booming. Most companies have an Internet presence whether it merely provides marketing information about the company or is a full service Web site. After the initial rush to get an Internet presence, you must consider how you can shift to true e-business. A Practical Guide to Planning for E-Business Success shows you how to use this powerful technology to provide your organization with a competitive advantage.

Data Mining

A Hands-on Approach for Business Professionals

Author: Robert Groth

Publisher: Prentice Hall

ISBN: 9780137564125

Category: Computers

Page: 264

View: 5599

This book contains all the practical information, hands-on demos and software you need to understand data mining.This book doesn't just explain data mining concepts: it shows you exactly how to make the most of them. If you're in marketing, you'll learn how data mining can help you rank your customers by the likelihood they'll respond to your mailings. If you're in MIS, you'll learn exactly how to prepare relational data for data mining. You'll learn how to use each of three powerful data mining tools; demos for all three are included on CD-ROM. The book also includes detailed case studies for several of the industries that can benefit most from data mining, including banking, finance, retail, healthcare, direct marketing, and telecommunications. The book is replete with shortcuts and techniques that have never been published before.For all business and marketing professionals, systems analysts, database administrators, students and others who want to leverage the power of data mining.

Data Preprocessing in Data Mining

Author: Salvador García,Julián Luengo,Francisco Herrera

Publisher: Springer

ISBN: 3319102478

Category: Computers

Page: 320

View: 6245

Data Preprocessing for Data Mining addresses one of the most important issues within the well-known Knowledge Discovery from Data process. Data directly taken from the source will likely have inconsistencies, errors or most importantly, it is not ready to be considered for a data mining process. Furthermore, the increasing amount of data in recent science, industry and business applications, calls to the requirement of more complex tools to analyze it. Thanks to data preprocessing, it is possible to convert the impossible into possible, adapting the data to fulfill the input demands of each data mining algorithm. Data preprocessing includes the data reduction techniques, which aim at reducing the complexity of the data, detecting or removing irrelevant and noisy elements from the data. This book is intended to review the tasks that fill the gap between the data acquisition from the source and the data mining process. A comprehensive look from a practical point of view, including basic concepts and surveying the techniques proposed in the specialized literature, is given.Each chapter is a stand-alone guide to a particular data preprocessing topic, from basic concepts and detailed descriptions of classical algorithms, to an incursion of an exhaustive catalog of recent developments. The in-depth technical descriptions make this book suitable for technical professionals, researchers, senior undergraduate and graduate students in data science, computer science and engineering.

Making Sense of Data II

A Practical Guide to Data Visualization, Advanced Data Mining Methods, and Applications

Author: Glenn J. Myatt,Wayne P. Johnson

Publisher: John Wiley & Sons

ISBN: 9780470417393

Category: Mathematics

Page: 308

View: 5469

A hands-on guide to making valuable decisions from data using advanced data mining methods and techniques This second installment in the Making Sense of Data series continues to explore a diverse range of commonly used approaches to making and communicating decisions from data. Delving into more technical topics, this book equips readers with advanced data mining methods that are needed to successfully translate raw data into smart decisions across various fields of research including business, engineering, finance, and the social sciences. Following a comprehensive introduction that details how to define a problem, perform an analysis, and deploy the results, Making Sense of Data II addresses the following key techniques for advanced data analysis: Data Visualization reviews principles and methods for understanding and communicating data through the use of visualization including single variables, the relationship between two or more variables, groupings in data, and dynamic approaches to interacting with data through graphical user interfaces. Clustering outlines common approaches to clustering data sets and provides detailed explanations of methods for determining the distance between observations and procedures for clustering observations. Agglomerative hierarchical clustering, partitioned-based clustering, and fuzzy clustering are also discussed. Predictive Analytics presents a discussion on how to build and assess models, along with a series of predictive analytics that can be used in a variety of situations including principal component analysis, multiple linear regression, discriminate analysis, logistic regression, and Naïve Bayes. Applications demonstrates the current uses of data mining across a wide range of industries and features case studies that illustrate the related applications in real-world scenarios. Each method is discussed within the context of a data mining process including defining the problem and deploying the results, and readers are provided with guidance on when and how each method should be used. The related Web site for the series (www.makingsenseofdata.com) provides a hands-on data analysis and data mining experience. Readers wishing to gain more practical experience will benefit from the tutorial section of the book in conjunction with the TraceisTM software, which is freely available online. With its comprehensive collection of advanced data mining methods coupled with tutorials for applications in a range of fields, Making Sense of Data II is an indispensable book for courses on data analysis and data mining at the upper-undergraduate and graduate levels. It also serves as a valuable reference for researchers and professionals who are interested in learning how to accomplish effective decision making from data and understanding if data analysis and data mining methods could help their organization.

Resampling Methods

A Practical Guide to Data Analysis. Second Edition

Author: Phillip I. Good

Publisher: Springer Science & Business Media

ISBN: 9780817642433

Category: Mathematics

Page: 238

View: 6205

"Most introductory statistics books ignore or give little attention to resampling methods, and thus another generation learns the less than optimal methods of statistical analysis. Good attempts to remedy this situation by writing an introductory text that focuses on resampling methods, and he does it well."- Ron C. Fryxell, Albion College"...The wealth of the bibliography covers a wide range of disciplines."---Dr. Dimitris Karlis, Athens University of EconomicsThis thoroughly revised second edition is a practical guide to data analysis using the bootstrap, cross-validation, and permutation tests. It is an essential resource for industrial statisticians, statistical consultants, and research professionals in science, engineering, and technology.Only requiring minimal mathematics beyond algebra, it provides a table-free introduction to data analysis utilizing numerous exercises, practical data sets, and freely available statistical shareware.Topics and Features:* Offers more practical examples plus an additional chapter dedicated to regression and data mining techniques and their limitations* Uses resampling approach to introduction statistics* A practical presentation that covers all three sampling methods: bootstrap, density-estimation, and permutations* Includes systematic guide to help one select the correct procedure for a particular application* Detailed coverage of all three statistical methodologies: classification, estimation, and hypothesis testing* Suitable for classroom use and individual, self-study purposes* Numerous practical examples using popular computer programs such as SAS(r), Stata(r), and StatXact(r)* Useful appendixes with computer programs and code to develop individualized methods* Downloadable freeware from author's website: http://users.oco.net/drphilgood/resamp.htmWith its accessible style and intuitive topic development, the book is an excellent basic resource for the power, simplicity, and versatility of the bootstrap, cross-validation, and permutation tests. Students, professionals, and researchers will find it a prarticularly useful handbook for modern resampling methods and their applications.

Applied Data Mining for Business and Industry

Author: Paolo Giudici,Silvia Figini

Publisher: John Wiley & Sons

ISBN: 0470058862

Category: Computers

Page: 249

View: 4355

This new edition sees the inclusion of 70% new material, including eight new case studies, that brings this best selling title up to date with the many advances made in the field since its original publication. In the text all the methods described are either computational or of a statistical modelling nature; complex probabilistic models and mathematical tools are not used, so the book is accessible to a wide audience of both students and industry professionals.

Learning Data Mining with Python

Author: Robert Layton

Publisher: Packt Publishing Ltd

ISBN: 178712956X

Category: Computers

Page: 358

View: 404

Harness the power of Python to develop data mining applications, analyze data, delve into machine learning, explore object detection using Deep Neural Networks, and create insightful predictive models. About This Book Use a wide variety of Python libraries for practical data mining purposes. Learn how to find, manipulate, analyze, and visualize data using Python. Step-by-step instructions on data mining techniques with Python that have real-world applications. Who This Book Is For If you are a Python programmer who wants to get started with data mining, then this book is for you. If you are a data analyst who wants to leverage the power of Python to perform data mining efficiently, this book will also help you. No previous experience with data mining is expected. What You Will Learn Apply data mining concepts to real-world problems Predict the outcome of sports matches based on past results Determine the author of a document based on their writing style Use APIs to download datasets from social media and other online services Find and extract good features from difficult datasets Create models that solve real-world problems Design and develop data mining applications using a variety of datasets Perform object detection in images using Deep Neural Networks Find meaningful insights from your data through intuitive visualizations Compute on big data, including real-time data from the internet In Detail This book teaches you to design and develop data mining applications using a variety of datasets, starting with basic classification and affinity analysis. This book covers a large number of libraries available in Python, including the Jupyter Notebook, pandas, scikit-learn, and NLTK. You will gain hands on experience with complex data types including text, images, and graphs. You will also discover object detection using Deep Neural Networks, which is one of the big, difficult areas of machine learning right now. With restructured examples and code samples updated for the latest edition of Python, each chapter of this book introduces you to new algorithms and techniques. By the end of the book, you will have great insights into using Python for data mining and understanding of the algorithms as well as implementations. Style and approach This book will be your comprehensive guide to learning the various data mining techniques and implementing them in Python. A variety of real-world datasets is used to explain data mining techniques in a very crisp and easy to understand manner.

Practical Data Science

A Guide to Building the Technology Stack for Turning Data Lakes into Business Assets

Author: Andreas François Vermeulen

Publisher: Apress

ISBN: 148423054X

Category: Computers

Page: 805

View: 7875

Learn how to build a data science technology stack and perform good data science with repeatable methods. You will learn how to turn data lakes into business assets. The data science technology stack demonstrated in Practical Data Science is built from components in general use in the industry. Data scientist Andreas Vermeulen demonstrates in detail how to build and provision a technology stack to yield repeatable results. He shows you how to apply practical methods to extract actionable business knowledge from data lakes consisting of data from a polyglot of data types and dimensions. What You'll Learn Become fluent in the essential concepts and terminology of data science and data engineering Build and use a technology stack that meets industry criteria Master the methods for retrieving actionable business knowledge Coordinate the handling of polyglot data types in a data lake for repeatable results Who This Book Is For Data scientists and data engineers who are required to convert data from a data lake into actionable knowledge for their business, and students who aspire to be data scientists and data engineers

Data mining

praktische Werkzeuge und Techniken für das maschinelle Lernen

Author: Ian H. Witten,Eibe Frank

Publisher: N.A

ISBN: 9783446215337

Category:

Page: 386

View: 3826

Data Mining with Rattle and R

The Art of Excavating Data for Knowledge Discovery

Author: Graham Williams

Publisher: Springer Science & Business Media

ISBN: 144199890X

Category: Mathematics

Page: 374

View: 9733

Data mining is the art and science of intelligent data analysis. By building knowledge from information, data mining adds considerable value to the ever increasing stores of electronic data that abound today. In performing data mining many decisions need to be made regarding the choice of methodology, the choice of data, the choice of tools, and the choice of algorithms. Throughout this book the reader is introduced to the basic concepts and some of the more popular algorithms of data mining. With a focus on the hands-on end-to-end process for data mining, Williams guides the reader through various capabilities of the easy to use, free, and open source Rattle Data Mining Software built on the sophisticated R Statistical Software. The focus on doing data mining rather than just reading about data mining is refreshing. The book covers data understanding, data preparation, data refinement, model building, model evaluation, and practical deployment. The reader will learn to rapidly deliver a data mining project using software easily installed for free from the Internet. Coupling Rattle with R delivers a very sophisticated data mining environment with all the power, and more, of the many commercial offerings.

Effective CRM Using Predictive Analytics

Author: Antonios Chorianopoulos

Publisher: John Wiley & Sons

ISBN: 1119011558

Category: BUSINESS & ECONOMICS

Page: 392

View: 3663

A step-by-step guide to data mining applications in CRM. Following a handbook approach, this book bridges the gap between analytics and their use in everyday marketing, providing guidance on solving real business problems using data mining techniques. The book is organized into three parts. Part one provides a methodological roadmap, covering both the business and the technical aspects. The data mining process is presented in detail along with specific guidelines for the development of optimized acquisition, cross/ deep/ up selling and retention campaigns, as well as effective customer segmentation schemes. Additionally, some of the most useful data mining algorithms are explained in a simple and comprehensive way for business users with no technical expertise. In part two, some of the most useful data mining algorithms are explained in a simple and comprehensive way for business users with no technical expertise. Part three is packed with real world case studies which employ the use of three leading data mining tools: IBM SPSS Modeler, RapidMiner and Data Mining for Excel. Case studies from industries including banking, retail and telecommunications are presented in detail so as to serve as templates for developing similar applications. Key Features: Includes numerous real-world case studies which are presented step by step, demystifying the usage of data mining models and clarifying all the methodological issues. Topics are presented with the use of three leading data mining tools: IBM SPSS Modeler, RapidMiner and Data Mining for Excel. Accompanied by a website featuring material from each case study, including datasets and relevant code. Combining data mining and business knowledge, this practical book provides all the necessary information for designing, setting up, executing and deploying data mining techniques in CRM. Effective CRM using Predictive Analytics will benefit data mining practitioners and consultants, data analysts, statisticians, and CRM officers. The book will also be useful to academics and students interested in applied data mining.

Data Mining with SQL Server 2005

Author: ZhaoHui Tang,Jamie MacLennan

Publisher: John Wiley & Sons

ISBN: 0471462616

Category: Computers

Page: 460

View: 4521

Your in–depth guide to using the new Microsoft data mining standard to solve today′s business problems Concealed inside your data warehouse and data marts is a wealth of valuable information just waiting to be discovered. All you need are the right tools to extract that information and put it to use. Serving as your expert guide, this book shows you how to create and implement data mining applications that will find the hidden patterns from your historical datasets. The authors explore the core concepts of data mining as well as the latest trends. They then reveal the best practices in the field, utilizing the innovative features of SQL Server 2005 so that you can begin building your own successful data mining projects. You′ll learn: The principal concepts of data mining How to work with the data mining algorithms included in SQL Server data mining How to use DMX–the data mining query language The XML for Analysis API The architecture of the SQL Server 2005 data mining component How to extend the SQL Server 2005 data mining platform by plugging in your own algorithms How to implement a data mining project using SQL Server Integration Services How to mine an OLAP cube How to build an online retail site with cross–selling features How to access SQL Server 2005 data mining features programmatically

Commercial Data Mining

Processing, Analysis and Modeling for Predictive Analytics Projects

Author: David Nettleton

Publisher: Elsevier

ISBN: 012416658X

Category: Computers

Page: 304

View: 3315

Whether you are brand new to data mining or working on your tenth predictive analytics project, Commercial Data Mining will be there for you as an accessible reference outlining the entire process and related themes. In this book, you'll learn that your organization does not need a huge volume of data or a Fortune 500 budget to generate business using existing information assets. Expert author David Nettleton guides you through the process from beginning to end and covers everything from business objectives to data sources, and selection to analysis and predictive modeling. Commercial Data Mining includes case studies and practical examples from Nettleton's more than 20 years of commercial experience. Real-world cases covering customer loyalty, cross-selling, and audience prediction in industries including insurance, banking, and media illustrate the concepts and techniques explained throughout the book. Illustrates cost-benefit evaluation of potential projects Includes vendor-agnostic advice on what to look for in off-the-shelf solutions as well as tips on building your own data mining tools Approachable reference can be read from cover to cover by readers of all experience levels Includes practical examples and case studies as well as actionable business insights from author's own experience