**Author**: John Snygg

**Publisher:** Springer Science & Business Media

**ISBN:**

**Category:** Mathematics

**Page:** 465

**View:** 455

Differential geometry is the study of the curvature and calculus of curves and surfaces. A New Approach to Differential Geometry using Clifford's Geometric Algebra simplifies the discussion to an accessible level of differential geometry by introducing Clifford algebra. This presentation is relevant because Clifford algebra is an effective tool for dealing with the rotations intrinsic to the study of curved space. Complete with chapter-by-chapter exercises, an overview of general relativity, and brief biographies of historical figures, this comprehensive textbook presents a valuable introduction to differential geometry. It will serve as a useful resource for upper-level undergraduates, beginning-level graduate students, and researchers in the algebra and physics communities.

This text explores how Clifford algebras and spinors have been sparking a collaboration and bridging a gap between Physics and Mathematics. This collaboration has been the consequence of a growing awareness of the importance of algebraic and geometric properties in many physical phenomena, and of the discovery of common ground through various touch points: relating Clifford algebras and the arising geometry to so-called spinors, and to their three definitions (both from the mathematical and physical viewpoint). The main point of contact are the representations of Clifford algebras and the periodicity theorems. Clifford algebras also constitute a highly intuitive formalism, having an intimate relationship to quantum field theory. The text strives to seamlessly combine these various viewpoints and is devoted to a wider audience of both physicists and mathematicians. Among the existing approaches to Clifford algebras and spinors this book is unique in that it provides a didactical presentation of the topic and is accessible to both students and researchers. It emphasizes the formal character and the deep algebraic and geometric completeness, and merges them with the physical applications. The style is clear and precise, but not pedantic. The sole pre-requisites is a course in Linear Algebra which most students of Physics, Mathematics or Engineering will have covered as part of their undergraduate studies.

This book contains papers presented at the Workshop on the Analysis of Large-scale, High-Dimensional, and Multi-Variate Data Using Topology and Statistics, held in Le Barp, France, June 2013. It features the work of some of the most prominent and recognized leaders in the field who examine challenges as well as detail solutions to the analysis of extreme scale data. The book presents new methods that leverage the mutual strengths of both topological and statistical techniques to support the management, analysis, and visualization of complex data. It covers both theory and application and provides readers with an overview of important key concepts and the latest research trends. Coverage in the book includes multi-variate and/or high-dimensional analysis techniques, feature-based statistical methods, combinatorial algorithms, scalable statistics algorithms, scalar and vector field topology, and multi-scale representations. In addition, the book details algorithms that are broadly applicable and can be used by application scientists to glean insight from a wide range of complex data sets.

Matrix algebra has been called "the arithmetic of higher mathematics" [Be]. We think the basis for a better arithmetic has long been available, but its versatility has hardly been appreciated, and it has not yet been integrated into the mainstream of mathematics. We refer to the system commonly called 'Clifford Algebra', though we prefer the name 'Geometric Algebra' suggested by Clifford himself. Many distinct algebraic systems have been adapted or developed to express geometric relations and describe geometric structures. Especially notable are those algebras which have been used for this purpose in physics, in particular, the system of complex numbers, the quaternions, matrix algebra, vector, tensor and spinor algebras and the algebra of differential forms. Each of these geometric algebras has some significant advantage over the others in certain applications, so no one of them provides an adequate algebraic structure for all purposes of geometry and physics. At the same time, the algebras overlap considerably, so they provide several different mathematical representations for individual geometrical or physical ideas.

The emphasis in this text is on classical electromagnetic theory and electrodynamics, that is, dynamical solutions to the Lorentz-force and Maxwell's equations. The natural appearance of the Minkowski spacetime metric in the paravector space of Clifford's geometric algebra is used to formulate a covariant treatment in special relativity that seamlessly connects spacetime concepts to the spatial vector treatments common in undergraduate texts. Baylis' geometrical interpretation, using such powerful tools as spinors and projectors, essentially allows a component-free notation and avoids the clutter of indices required in tensorial treatments. The exposition is clear and progresses systematically - from a discussion of electromagnetic units and an explanation of how the SI system can be readily converted to the Gaussian or natural Heaviside-Lorentz systems, to an introduction of geometric algebra and the paravector model of spacetime, and finally, special relativity. Other topics include Maxwell's equation(s), the Lorentz-force law, the Fresnel equations, electromagnetic waves and polarization, wave guides, radiation from accelerating charges and time-dependent currents, the Liénard-Wiechert potentials, and radiation reaction, all of which benefit from the modern relativistic approach. Numerous worked examples and exercises dispersed throughout the text help the reader understand new concepts and facilitate self-study of the material. Each chapter concludes with a set of problems, many with answers. Complete solutions are also available. An excellent feature is the integration of Maple into the text, thereby facilitating difficult calculations. To download accompanying Maple worksheets, please visit http://www.cs.uwindsor.ca/users/b/baylis

In the first century after its discovery, the electron has come to be a fundamental element in the analysis of physical aspects of nature. This book is devoted to the construction of a deductive theory of the electron, starting from first principles and using a simple mathematical tool, geometric analysis. Its purpose is to present a comprehensive theory of the electron to the point where a connection can be made with the main approaches to the study of the electron in physics. The introduction describes the methodology. Chapter 2 presents the concept of space-time-action relativity theory and in chapter 3 the mathematical structures describing action are analyzed. Chapters 4, 5, and 6 deal with the theory of the electron in a series of aspects where the geometrical analysis is more relevant. Finally in chapter 7 the form of geometrical analysis used in the book is presented to elucidate the broad range of topics which are covered and the range of mathematical structures which are implicitly or explicitly included. The book is directed to two different audiences of graduate students and research scientists: primarily to theoretical physicists in the field of electron physics as well as those in the more general field of quantum mechanics, elementary particle physics, and general relativity; secondly, to mathematicians in the field of geometric analysis.

An introduction, at a basic level, to the conformal differential geometry of surfaces and submanifolds is given. That is, the book discusses those aspects of the geometry of surfaces that does only refer to an angle measurement but not to a length measurement. Different methods (models) to think about their geometry as well as to do computations are presented. Various applications to areas of current research interest are discussed, including discrete net theory and certain relations between differential geometry and integrable systems theory.

Geometric algebra has established itself as a powerful and valuable mathematical tool for solving problems in computer science, engineering, physics, and mathematics. The articles in this volume, written by experts in various fields, reflect an interdisciplinary approach to the subject, and highlight a range of techniques and applications. Relevant ideas are introduced in a self-contained manner and only a knowledge of linear algebra and calculus is assumed. Features and Topics: * The mathematical foundations of geometric algebra are explored * Applications in computational geometry include models of reflection and ray-tracing and a new and concise characterization of the crystallographic groups * Applications in engineering include robotics, image geometry, control-pose estimation, inverse kinematics and dynamics, control and visual navigation * Applications in physics include rigid-body dynamics, elasticity, and electromagnetism * Chapters dedicated to quantum information theory dealing with multi- particle entanglement, MRI, and relativistic generalizations Practitioners, professionals, and researchers working in computer science, engineering, physics, and mathematics will find a wide range of useful applications in this state-of-the-art survey and reference book. Additionally, advanced graduate students interested in geometric algebra will find the most current applications and methods discussed.