**Author**: Robert S. Strichartz

**Publisher:** World Scientific

**ISBN:** 9789812384300

**Category:** Mathematics

**Page:** 226

**View:** 4243

This important book provides a concise exposition of the basic ideas of the theory of distribution and Fourier transforms and its application to partial differential equations. The author clearly presents the ideas, precise statements of theorems, and explanations of ideas behind the proofs. Methods in which techniques are used in applications are illustrated, and many problems are included. The book also introduces several significant recent topics, including pseudodifferential operators, wave front sets, wavelets, and quasicrystals. Background mathematical prerequisites have been kept to a minimum, with only a knowledge of multidimensional calculus and basic complex variables needed to fully understand the concepts in the book.A Guide to Distribution Theory and Fourier Transforms can serve as a textbook for parts of a course on Applied Analysis or Methods of Mathematical Physics, and in fact it is used that way at Cornell.

Differential Equations on Fractals opens the door to understanding the recently developed area of analysis on fractals, focusing on the construction of a Laplacian on the Sierpinski gasket and related fractals. Written in a lively and informal style, with lots of intriguing exercises on all levels of difficulty, the book is accessible to advanced undergraduates, graduate students, and mathematicians who seek an understanding of analysis on fractals. Robert Strichartz takes the reader to the frontiers of research, starting with carefully motivated examples and constructions. One of the great accomplishments of geometric analysis in the nineteenth and twentieth centuries was the development of the theory of Laplacians on smooth manifolds. But what happens when the underlying space is rough? Fractals provide models of rough spaces that nevertheless have a strong structure, specifically self-similarity. Exploiting this structure, researchers in probability theory in the 1980s were able to prove the existence of Brownian motion, and therefore of a Laplacian, on certain fractals. An explicit analytic construction was provided in 1989 by Jun Kigami. Differential Equations on Fractals explains Kigami's construction, shows why it is natural and important, and unfolds many of the interesting consequences that have recently been discovered. This book can be used as a self-study guide for students interested in fractal analysis, or as a textbook for a special topics course.

A comprehensive exposition on analytic methods for solving science and engineering problems, written from the unifying viewpoint of distribution theory and enriched with many modern topics which are important to practioners and researchers. The book is ideal for a general scientific and engineering audience, yet it is mathematically precise.

Fourier Transforms: Principles and Applications explains transform methods and their applications to electrical systems from circuits, antennas, and signal processors—ably guiding readers from vector space concepts through the Discrete Fourier Transform (DFT), Fourier series, and Fourier transform to other related transform methods. Featuring chapter end summaries of key results, over two hundred examples and four hundred homework problems, and a Solutions Manual this book is perfect for graduate students in signal processing and communications as well as practicing engineers. Class-tested at Dartmouth Provides the same solid background as classic texts in the field, but with an emphasis on digital and other contemporary applications to signal and image processing Modular coverage of material allows for topics to be covered by preference MATLAB files and Solutions Manual available to instructors Over 300 figures, 200 worked examples, and 432 homework problems

Abstract theory remains an indispensable foundation for the study of concrete cases. It shows what the general picture should look like and provides results that are useful again and again. Despite this, however, there are few, if any introductory texts that present a unified picture of the general abstract theory. A Course in Abstract Harmonic Analysis offers a concise, readable introduction to Fourier analysis on groups and unitary representation theory. After a brief review of the relevant parts of Banach algebra theory and spectral theory, the book proceeds to the basic facts about locally compact groups, Haar measure, and unitary representations, including the Gelfand-Raikov existence theorem. The author devotes two chapters to analysis on Abelian groups and compact groups, then explores induced representations, featuring the imprimitivity theorem and its applications. The book concludes with an informal discussion of some further aspects of the representation theory of non-compact, non-Abelian groups.

Dieses Buch ist eine umfassende Einführung in die klassischen Lösungsmethoden partieller Differentialgleichungen. Es wendet sich an Leser mit Kenntnissen aus einem viersemestrigen Grundstudium der Mathematik (und Physik) und legt seinen Schwerpunkt auf die explizite Darstellung der Lösungen. Es ist deshalb besonders auch für Anwender (Physiker, Ingenieure) sowie für Nichtspezialisten, die die Methoden der mathematischen Physik kennenlernen wollen, interessant. Durch die große Anzahl von Beispielen und Übungsaufgaben eignet es sich gut zum Gebrauch neben Vorlesungen sowie zum Selbststudium.

New edition of a successful undergraduate guide to the basics of an important mathematical technique.

This book grew from a one-semester course offered for many years to a mixed audience of graduate and undergraduate students who have not had the luxury of taking a course in measure theory. The core of the book covers the basic topics of independence, conditioning, martingales, convergence in distribution, and Fourier transforms. In addition there are numerous sections treating topics traditionally thought of as more advanced, such as coupling and the KMT strong approximation, option pricing via the equivalent martingale measure, and the isoperimetric inequality for Gaussian processes. The book is not just a presentation of mathematical theory, but is also a discussion of why that theory takes its current form. It will be a secure starting point for anyone who needs to invoke rigorous probabilistic arguments and understand what they mean.

Fourier series and fourier transforms; Distributions; Elliptic equations (fundamental theory); Initial value problems (cauchy problems); Evolution equations; Hyperbolic equations; Semi-linear hyperbolic equations; Green's functions and spectra.