A First Course in Ordinary Differential Equations

Analytical and Numerical Methods

Author: Martin Hermann,Masoud Saravi

Publisher: Springer Science & Business

ISBN: 8132218353

Category: Mathematics

Page: 288

View: 6067

This book presents a modern introduction to analytical and numerical techniques for solving ordinary differential equations (ODEs). Contrary to the traditional format—the theorem-and-proof format—the book is focusing on analytical and numerical methods. The book supplies a variety of problems and examples, ranging from the elementary to the advanced level, to introduce and study the mathematics of ODEs. The analytical part of the book deals with solution techniques for scalar first-order and second-order linear ODEs, and systems of linear ODEs—with a special focus on the Laplace transform, operator techniques and power series solutions. In the numerical part, theoretical and practical aspects of Runge-Kutta methods for solving initial-value problems and shooting methods for linear two-point boundary-value problems are considered. The book is intended as a primary text for courses on the theory of ODEs and numerical treatment of ODEs for advanced undergraduate and early graduate students. It is assumed that the reader has a basic grasp of elementary calculus, in particular methods of integration, and of numerical analysis. Physicists, chemists, biologists, computer scientists and engineers whose work involves solving ODEs will also find the book useful as a reference work and tool for independent study. The book has been prepared within the framework of a German–Iranian research project on mathematical methods for ODEs, which was started in early 2012.

A First Course in the Numerical Analysis of Differential Equations

Author: Arieh Iserles

Publisher: Cambridge University Press

ISBN: 9780521556552

Category: Mathematics

Page: 378

View: 8767

Numerical analysis presents different faces to the world. For mathematicians it is a bona fide mathematical theory with an applicable flavour. For scientists and engineers it is a practical, applied subject, part of the standard repertoire of modelling techniques. For computer scientists it is a theory on the interplay of computer architecture and algorithms for real-number calculations. The tension between these standpoints is the driving force of this book, which presents a rigorous account of the fundamentals of numerical analysis of both ordinary and partial differential equations. The point of departure is mathematical but the exposition strives to maintain a balance between theoretical, algorithmic and applied aspects of the subject. In detail, topics covered include numerical solution of ordinary differential equations by multistep and Runge-Kutta methods; finite difference and finite elements techniques for the Poisson equation; a variety of algorithms to solve large, sparse algebraic systems; methods for parabolic and hyperbolic differential equations and techniques of their analysis. The book is accompanied by an appendix that presents brief back-up in a number of mathematical topics. Dr Iserles concentrates on fundamentals: deriving methods from first principles, analysing them with a variety of mathematical techniques and occasionally discussing questions of implementation and applications. By doing so, he is able to lead the reader to theoretical understanding of the subject without neglecting its practical aspects. The outcome is a textbook that is mathematically honest and rigorous and provides its target audience with a wide range of skills in both ordinary and partial differential equations.

A First Course in Differential Equations with Modeling Applications

Author: Dennis G. Zill

Publisher: Cengage Learning

ISBN: 1285401107

Category: Mathematics

Page: 464

View: 7776

A FIRST COURSE IN DIFFERENTIAL EQUATIONS WITH MODELING APPLICATIONS, 10th Edition strikes a balance between the analytical, qualitative, and quantitative approaches to the study of differential equations. This proven and accessible text speaks to beginning engineering and math students through a wealth of pedagogical aids, including an abundance of examples, explanations, Remarks boxes, definitions, and group projects. Written in a straightforward, readable, and helpful style, this book provides a thorough treatment of boundary-value problems and partial differential equations. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Partial Differential Equations

Analytical and Numerical Methods, Second Edition

Author: Mark S. Gockenbach

Publisher: SIAM

ISBN: 0898719356

Category: Mathematics

Page: 654

View: 6371

A fresh, forward-looking undergraduate textbook that treats the finite element method and classical Fourier series method with equal emphasis.

A First Course in the Numerical Analysis of Differential Equations

Author: A. Iserles

Publisher: Cambridge University Press

ISBN: 0521734908

Category: Mathematics

Page: 459

View: 4506

lead the reader to a theoretical understanding of the subject without neglecting its practical aspects. The outcome is a textbook that is mathematically honest and rigorous and provides its target audience with a wide range of skills in both ordinary and partial differential equations." --Book Jacket.

A Course in Ordinary Differential Equations, Second Edition

Author: Stephen A. Wirkus,Randall J. Swift

Publisher: CRC Press

ISBN: 1466509104

Category: Mathematics

Page: 807

View: 1738

A Course in Ordinary Differential Equations, Second Edition teaches students how to use analytical and numerical solution methods in typical engineering, physics, and mathematics applications. Lauded for its extensive computer code and student-friendly approach, the first edition of this popular textbook was the first on ordinary differential equations (ODEs) to include instructions on using MATLAB®, Mathematica®, and MapleTM. This second edition reflects the feedback of students and professors who used the first edition in the classroom. New to the Second Edition Moves the computer codes to Computer Labs at the end of each chapter, which gives professors flexibility in using the technology Covers linear systems in their entirety before addressing applications to nonlinear systems Incorporates the latest versions of MATLAB, Maple, and Mathematica Includes new sections on complex variables, the exponential response formula for solving nonhomogeneous equations, forced vibrations, and nondimensionalization Highlights new applications and modeling in many fields Presents exercise sets that progress in difficulty Contains color graphs to help students better understand crucial concepts in ODEs Provides updated and expanded projects in each chapter Suitable for a first undergraduate course, the book includes all the basics necessary to prepare students for their future studies in mathematics, engineering, and the sciences. It presents the syntax from MATLAB, Maple, and Mathematica to give students a better grasp of the theory and gain more insight into real-world problems. Along with covering traditional topics, the text describes a number of modern topics, such as direction fields, phase lines, the Runge-Kutta method, and epidemiological and ecological models. It also explains concepts from linear algebra so that students acquire a thorough understanding of differential equations.

A First Course in Differential Equations

Author: J David Logan

Publisher: Springer Science & Business Media

ISBN: 9781441975928

Category: Mathematics

Page: 386

View: 3587

This concise and up-to-date textbook is designed for the standard sophomore course in differential equations. It treats the basic ideas, models, and solution methods in a user friendly format that is accessible to engineers, scientists, economists, and mathematics majors. It emphasizes analytical, graphical, and numerical techniques, and it provides the tools needed by students to continue to the next level in applying the methods to more advanced problems. There is a strong connection to applications with motivations in mechanics and heat transfer, circuits, biology, economics, chemical reactors, and other areas. Moreover, the text contains a new, elementary chapter on systems of differential equations, both linear and nonlinear, that introduces key ideas without matrix analysis. Two subsequent chapters treat systems in a more formal way. Briefly, the topics include: First-order equations: separable, linear, autonomous, and bifurcation phenomena; Second-order linear homogeneous and non-homogeneous equations; Laplace transforms; and Linear and nonlinear systems, and phase plane properties.

Numerical Solution of Ordinary Differential Equations

Author: Kendall Atkinson,Weimin Han,David E. Stewart

Publisher: John Wiley & Sons

ISBN: 1118164520

Category: Mathematics

Page: 272

View: 2792

A concise introduction to numerical methodsand the mathematical framework neededto understand their performance Numerical Solution of Ordinary Differential Equations presents a complete and easy-to-follow introduction to classical topics in the numerical solution of ordinary differential equations. The book's approach not only explains the presented mathematics, but also helps readers understand how these numerical methods are used to solve real-world problems. Unifying perspectives are provided throughout the text, bringing together and categorizing different types of problems in order to help readers comprehend the applications of ordinary differential equations. In addition, the authors' collective academic experience ensures a coherent and accessible discussion of key topics, including: Euler's method Taylor and Runge-Kutta methods General error analysis for multi-step methods Stiff differential equations Differential algebraic equations Two-point boundary value problems Volterra integral equations Each chapter features problem sets that enable readers to test and build their knowledge of the presented methods, and a related Web site features MATLAB® programs that facilitate the exploration of numerical methods in greater depth. Detailed references outline additional literature on both analytical and numerical aspects of ordinary differential equations for further exploration of individual topics. Numerical Solution of Ordinary Differential Equations is an excellent textbook for courses on the numerical solution of differential equations at the upper-undergraduate and beginning graduate levels. It also serves as a valuable reference for researchers in the fields of mathematics and engineering.

A First Course on Numerical Methods

Author: Uri M. Ascher,Chen Greif

Publisher: SIAM

ISBN: 0898719984

Category: Mathematics

Page: 552

View: 7265

Offers students a practical knowledge of modern techniques in scientific computing.

A First Course in Differential Equations, Modeling, and Simulation, Second Edition

Author: Carlos A. Smith,Scott W. Campbell

Publisher: CRC Press

ISBN: 1482257238

Category: Mathematics

Page: 16

View: 4315

A First Course in Differential Equations, Modeling, and Simulation shows how differential equations arise from applying basic physical principles and experimental observations to engineering systems. Avoiding overly theoretical explanations, the textbook also discusses classical and Laplace transform methods for obtaining the analytical solution of differential equations. In addition, the authors explain how to solve sets of differential equations where analytical solutions cannot easily be obtained. Incorporating valuable suggestions from mathematicians and mathematics professors, the Second Edition: Expands the chapter on classical solutions of ordinary linear differential equations to include additional methods Increases coverage of response of first- and second-order systems to a full, stand-alone chapter to emphasize its importance Includes new examples of applications related to chemical reactions, environmental engineering, biomedical engineering, and biotechnology Contains new exercises that can be used as projects and answers to many of the end-of-chapter problems Features new end-of-chapter problems and updates throughout Thus, A First Course in Differential Equations, Modeling, and Simulation, Second Edition provides students with a practical understanding of how to apply differential equations in modern engineering and science.

A First Course in the Finite Element Method

Author: Daryl L. Logan

Publisher: Cengage Learning

ISBN: 1133169058

Category: Technology & Engineering

Page: 954

View: 5940

A FIRST COURSE IN THE FINITE ELEMENT METHOD provides a simple, basic approach to the course material that can be understood by both undergraduate and graduate students without the usual prerequisites (i.e. structural analysis). The book is written primarily as a basic learning tool for the undergraduate student in civil and mechanical engineering whose main interest is in stress analysis and heat transfer. The text is geared toward those who want to apply the finite element method as a tool to solve practical physical problems. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

A First Course in the Finite Element Method, SI Version

Author: Daryl L. Logan

Publisher: Cengage Learning

ISBN: 1133715788

Category: Technology & Engineering

Page: 954

View: 7741

A FIRST COURSE IN THE FINITE ELEMENT METHOD provides a simple, basic approach to the course material that can be understood by both undergraduate and graduate students without the usual prerequisites (i.e. structural analysis). The book is written primarily as a basic learning tool for the undergraduate student in civil and mechanical engineering whose main interest is in stress analysis and heat transfer. The text is geared toward those who want to apply the finite element method as a tool to solve practical physical problems. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Student solutions manual to accompany Zill's A first course in differential equations, fifth edition

Author: Dennis G. Zill,Warren S. Wright,Carol D. Wright

Publisher: Brooks/Cole

ISBN: 9780534931551

Category: Mathematics

Page: 143

View: 9257

% mainly for math and engineering majors% clear, concise writng style is student orientedJ% graded problem sets, with many diverse problems, range form drill to more challenging problems% this course follows the three-semester calculus sequence at two- and four-year schools

Scientific Computing and Differential Equations

An Introduction to Numerical Methods

Author: Gene H. Golub,James M. Ortega

Publisher: Elsevier

ISBN: 0080516696

Category: Mathematics

Page: 344

View: 9543

Scientific Computing and Differential Equations: An Introduction to Numerical Methods, is an excellent complement to Introduction to Numerical Methods by Ortega and Poole. The book emphasizes the importance of solving differential equations on a computer, which comprises a large part of what has come to be called scientific computing. It reviews modern scientific computing, outlines its applications, and places the subject in a larger context. This book is appropriate for upper undergraduate courses in mathematics, electrical engineering, and computer science; it is also well-suited to serve as a textbook for numerical differential equations courses at the graduate level. An introductory chapter gives an overview of scientific computing, indicating its important role in solving differential equations, and placing the subject in the larger environment Contains an introduction to numerical methods for both ordinary and partial differential equations Concentrates on ordinary differential equations, especially boundary-value problems Contains most of the main topics for a first course in numerical methods, and can serve as a text for this course Uses material for junior/senior level undergraduate courses in math and computer science plus material for numerical differential equations courses for engineering/science students at the graduate level

A First Course in Computational Physics

Author: Paul L. DeVries,Javier E. Hasbun

Publisher: Jones & Bartlett Publishers

ISBN: 144965780X

Category: Technology & Engineering

Page: 433

View: 2266

Computers and computation are extremely important components of physics and should be integral parts of a physicist’s education. Furthermore, computational physics is reshaping the way calculations are made in all areas of physics. Intended for the physics and engineering students who have completed the introductory physics course, A First Course in Computational Physics, Second Edition covers the different types of computational problems using MATLAB with exercises developed around problems of physical interest. Topics such as root finding, Newton-Cotes integration, and ordinary differential equations are included and presented in the context of physics problems. A few topics rarely seen at this level such as computerized tomography, are also included. Within each chapter, the student is led from relatively elementary problems and simple numerical approaches through derivations of more complex and sophisticated methods, often culminating in the solution to problems of significant difficulty. The goal is to demonstrate how numerical methods are used to solve the problems that physicists face. Read the review published in Computing in Science & Engineering magazine, March/April 2011 (Vol. 13, No. 2) © 2011 IEEE, Published by the IEEE Computer Society

A First Course in Differential Equations, Modeling, and Simulation

Author: Carlos A. Smith,Scott W. Campbell

Publisher: CRC Press

ISBN: 1439850887

Category: Mathematics

Page: 345

View: 3088

Emphasizing a practical approach for engineers and scientists, A First Course in Differential Equations, Modeling, and Simulation avoids overly theoretical explanations and shows readers how differential equations arise from applying basic physical principles and experimental observations to engineering systems. It also covers classical methods for obtaining the analytical solution of differential equations and Laplace transforms. In addition, the authors discuss how these equations describe mathematical systems and how to use software to solve sets of equations where analytical solutions cannot be obtained. Using simple physics, the book introduces dynamic modeling, the definition of differential equations, two simple methods for obtaining their analytical solution, and a method to follow when modeling. It then presents classical methods for solving differential equations, discusses the engineering importance of the roots of a characteristic equation, and describes the response of first- and second-order differential equations. A study of the Laplace transform method follows with explanations of the transfer function and the power of Laplace transform for obtaining the analytical solution of coupled differential equations. The next several chapters present the modeling of translational and rotational mechanical systems, fluid systems, thermal systems, and electrical systems. The final chapter explores many simulation examples using a typical software package for the solution of the models developed in previous chapters. Providing the necessary tools to apply differential equations in engineering and science, this text helps readers understand differential equations, their meaning, and their analytical and computer solutions. It illustrates how and where differential equations develop, how they describe engineering systems, how to obtain the analytical solution, and how to use software to simulate the systems.

Numerical Solution of Partial Differential Equations

An Introduction

Author: K. W. Morton,D. F. Mayers

Publisher: Cambridge University Press

ISBN: 1139443208

Category: Mathematics

Page: N.A

View: 1209

This is the 2005 second edition of a highly successful and well-respected textbook on the numerical techniques used to solve partial differential equations arising from mathematical models in science, engineering and other fields. The authors maintain an emphasis on finite difference methods for simple but representative examples of parabolic, hyperbolic and elliptic equations from the first edition. However this is augmented by new sections on finite volume methods, modified equation analysis, symplectic integration schemes, convection-diffusion problems, multigrid, and conjugate gradient methods; and several sections, including that on the energy method of analysis, have been extensively rewritten to reflect modern developments. Already an excellent choice for students and teachers in mathematics, engineering and computer science departments, the revised text includes more latest theoretical and industrial developments.

Nonlinear Ordinary Differential Equations

Analytical Approximation and Numerical Methods

Author: Martin Hermann,Masoud Saravi

Publisher: Springer

ISBN: 813222812X

Category: Mathematics

Page: 310

View: 4400

The book discusses the solutions to nonlinear ordinary differential equations (ODEs) using analytical and numerical approximation methods. Recently, analytical approximation methods have been largely used in solving linear and nonlinear lower-order ODEs. It also discusses using these methods to solve some strong nonlinear ODEs. There are two chapters devoted to solving nonlinear ODEs using numerical methods, as in practice high-dimensional systems of nonlinear ODEs that cannot be solved by analytical approximate methods are common. Moreover, it studies analytical and numerical techniques for the treatment of parameter-depending ODEs. The book explains various methods for solving nonlinear-oscillator and structural-system problems, including the energy balance method, harmonic balance method, amplitude frequency formulation, variational iteration method, homotopy perturbation method, iteration perturbation method, homotopy analysis method, simple and multiple shooting method, and the nonlinear stabilized march method. This book comprehensively investigates various new analytical and numerical approximation techniques that are used in solving nonlinear-oscillator and structural-system problems. Students often rely on the finite element method to such an extent that on graduation they have little or no knowledge of alternative methods of solving problems. To rectify this, the book introduces several new approximation techniques.

Introduction to Numerical and Analytical Methods with MATLAB® for Engineers and Scientists

Author: William Bober

Publisher: CRC Press

ISBN: 146657609X

Category: Mathematics

Page: 556

View: 4342

Introduction to Numerical and Analytical Methods with MATLAB® for Engineers and Scientists provides the basic concepts of programming in MATLAB for engineering applications. • Teaches engineering students how to write computer programs on the MATLAB platform • Examines the selection and use of numerical and analytical methods through examples and case studies • Demonstrates mathematical concepts that can be used to help solve engineering problems, including matrices, roots of equations, integration, ordinary differential equations, curve fitting, algebraic linear equations, and more The text covers useful numerical methods, including interpolation, Simpson’s rule on integration, the Gauss elimination method for solving systems of linear algebraic equations, the Runge-Kutta method for solving ordinary differential equations, and the search method in combination with the bisection method for obtaining the roots of transcendental and polynomial equations. It also highlights MATLAB’s built-in functions. These include interp1 function, the quad and dblquad functions, the inv function, the ode45 function, the fzero function, and many others. The second half of the text covers more advanced topics, including the iteration method for solving pipe flow problems, the Hardy-Cross method for solving flow rates in a pipe network, separation of variables for solving partial differential equations, and the use of Laplace transforms to solve both ordinary and partial differential equations. This book serves as a textbook for a first course in numerical methods using MATLAB to solve problems in mechanical, civil, aeronautical, and electrical engineering. It can also be used as a textbook or as a reference book in higher level courses.

An Introduction to Modeling of Transport Processes

Applications to Biomedical Systems

Author: Ashim Datta,Vineet Rakesh

Publisher: Cambridge University Press

ISBN: 0521119243

Category: Science

Page: 503

View: 7629

Organised around problem solving, this book introduces the reader to computational simulation, bridging fundamental theory with real-world applications.