A Course on Mathematical Logic

Author: Shashi Mohan Srivastava

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 198

View: 875

This is a short, modern, and motivated introduction to mathematical logic for upper undergraduate and beginning graduate students in mathematics and computer science. Any mathematician who is interested in getting acquainted with logic and would like to learn Gödel’s incompleteness theorems should find this book particularly useful. The treatment is thoroughly mathematical and prepares students to branch out in several areas of mathematics related to foundations and computability, such as logic, axiomatic set theory, model theory, recursion theory, and computability. In this new edition, many small and large changes have been made throughout the text. The main purpose of this new edition is to provide a healthy first introduction to model theory, which is a very important branch of logic. Topics in the new chapter include ultraproduct of models, elimination of quantifiers, types, applications of types to model theory, and applications to algebra, number theory and geometry. Some proofs, such as the proof of the very important completeness theorem, have been completely rewritten in a more clear and concise manner. The new edition also introduces new topics, such as the notion of elementary class of structures, elementary diagrams, partial elementary maps, homogeneous structures, definability, and many more.

A Course on Basic Model Theory

Author: Haimanti Sarbadhikari

Publisher: Springer

ISBN:

Category: Mathematics

Page: 291

View: 999

This self-contained book is an exposition of the fundamental ideas of model theory. It presents the necessary background from logic, set theory and other topics of mathematics. Only some degree of mathematical maturity and willingness to assimilate ideas from diverse areas are required. The book can be used for both teaching and self-study, ideally over two semesters. It is primarily aimed at graduate students in mathematical logic who want to specialise in model theory. However, the first two chapters constitute the first introduction to the subject and can be covered in one-semester course to senior undergraduate students in mathematical logic. The book is also suitable for researchers who wish to use model theory in their work.

A Course in Mathematical Logic

Author: I͡U. I. Manin

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 286

View: 804

This book is a text of mathematical logic on a sophisticated level, presenting the reader with several of the most significant discoveries of the last 10 to 15 years, including the independence of the continuum hypothesis, the Diophantine nature of enumerable sets and the impossibility of finding an algorithmic solution for certain problems. The book contains the first textbook presentation of Matijasevic's result. The central notions are provability and computability; the emphasis of the presentation is on aspects of the theory which are of interest to the working mathematician. Many of the approaches and topics covered are not standard parts of logic courses; they include a discussion of the logic of quantum mechanics, Goedel's constructible sets as a sub-class of von Neumann's universe, the Kolmogorov theory of complexity. Feferman's theorem on Goedel formulas as axioms and Highman's theorem on groups defined by enumerable sets of generators and relations. A number of informal digressions concerned with psychology, linguistics, and common sense logic should interest students of the philosophy of science or the humanities.

A First Course in Mathematical Logic and Set Theory

Author: Michael L. O'Leary

Publisher: John Wiley & Sons

ISBN:

Category: Mathematics

Page: 464

View: 850

Rather than teach mathematics and the structure of proofssimultaneously, this book first introduces logic as the foundationof proofs and then demonstrates how logic applies to mathematicaltopics. This method ensures that readers gain a firmunderstanding of how logic interacts with mathematics and empowersthem to solve more complex problems. The study of logic andapplications is used throughout to prepare readers for further workin proof writing. Readers are first introduced tomathematical proof-writing, and then the book provides anoverview of symbolic logic that includes two-column logicproofs. Readers are then transitioned to set theory andinduction, and applications of number theory, relations, functions,groups, and topology are provided to further aid incomprehension. Topical coverage includes propositional logic,predicate logic, set theory, mathematical induction, number theory,relations, functions, group theory, and topology.

A Course in Mathematical Logic

Author: Yu.I. Manin

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 288

View: 871

1. This book is above all addressed to mathematicians. It is intended to be a textbook of mathematical logic on a sophisticated level, presenting the reader with several of the most significant discoveries of the last ten or fifteen years. These include: the independence of the continuum hypothe sis, the Diophantine nature of enumerable sets, the impossibility of finding an algorithmic solution for one or two old problems. All the necessary preliminary material, including predicate logic and the fundamentals of recursive function theory, is presented systematically and with complete proofs. We only assume that the reader is familiar with "naive" set theoretic arguments. In this book mathematical logic is presented both as a part of mathe matics and as the result of its self-perception. Thus, the substance of the book consists of difficult proofs of subtle theorems, and the spirit of the book consists of attempts to explain what these theorems say about the mathematical way of thought. Foundational problems are for the most part passed over in silence. Most likely, logic is capable of justifying mathematics to no greater extent than biology is capable of justifying life. 2. The first two chapters are devoted to predicate logic. The presenta tion here is fairly standard, except that semantics occupies a very domi nant position, truth is introduced before deducibility, and models of speech in formal languages precede the systematic study of syntax.

Fundamentals of Mathematical Logic

Author: Peter G. Hinman

Publisher: A K Peters/CRC Press

ISBN:

Category: Mathematics

Page: 896

View: 492

This introductory graduate text covers modern mathematical logic from propositional, first-order and infinitary logic and Gödel's Incompleteness Theorems to extensive introductions to set theory, model theory and recursion (computability) theory. Based on the author's more than 35 years of teaching experience, the book develops students' intuition by presenting complex ideas in the simplest context for which they make sense. The book is appropriate for use as a classroom text, for self-study, and as a reference on the state of modern logic.

A Course on Set Theory

Author: Ernest Schimmerling

Publisher: Cambridge University Press

ISBN:

Category: Mathematics

Page:

View: 629

Set theory is the mathematics of infinity and part of the core curriculum for mathematics majors. This book blends theory and connections with other parts of mathematics so that readers can understand the place of set theory within the wider context. Beginning with the theoretical fundamentals, the author proceeds to illustrate applications to topology, analysis and combinatorics, as well as to pure set theory. Concepts such as Boolean algebras, trees, games, dense linear orderings, ideals, filters and club and stationary sets are also developed. Pitched specifically at undergraduate students, the approach is neither esoteric nor encyclopedic. The author, an experienced instructor, includes motivating examples and over 100 exercises designed for homework assignments, reviews and exams. It is appropriate for undergraduates as a course textbook or for self-study. Graduate students and researchers will also find it useful as a refresher or to solidify their understanding of basic set theory.

A Course in Mathematical Logic for Mathematicians

Author: Yu. I. Manin

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 384

View: 639

1. The ?rst edition of this book was published in 1977. The text has been well received and is still used, although it has been out of print for some time. In the intervening three decades, a lot of interesting things have happened to mathematical logic: (i) Model theory has shown that insights acquired in the study of formal languages could be used fruitfully in solving old problems of conventional mathematics. (ii) Mathematics has been and is moving with growing acceleration from the set-theoretic language of structures to the language and intuition of (higher) categories, leaving behind old concerns about in?nities: a new view of foundations is now emerging. (iii) Computer science, a no-nonsense child of the abstract computability theory, has been creatively dealing with old challenges and providing new ones, such as the P/NP problem. Planning additional chapters for this second edition, I have decided to focus onmodeltheory,the conspicuousabsenceofwhichinthe ?rsteditionwasnoted in several reviews, and the theory of computation, including its categorical and quantum aspects. The whole Part IV: Model Theory, is new. I am very grateful to Boris I. Zilber, who kindly agreed to write it. It may be read directly after Chapter II. The contents of the ?rst edition are basically reproduced here as Chapters I–VIII. Section IV.7, on the cardinality of the continuum, is completed by Section IV.7.3, discussing H. Woodin’s discovery.

Introduction to Mathematical Logic, Fourth Edition

Author: Elliott Mendelson

Publisher: CRC Press

ISBN:

Category: Mathematics

Page: 440

View: 150

The Fourth Edition of this long-established text retains all the key features of the previous editions, covering the basic topics of a solid first course in mathematical logic. This edition includes an extensive appendix on second-order logic, a section on set theory with urlements, and a section on the logic that results when we allow models with empty domains. The text contains numerous exercises and an appendix furnishes answers to many of them. Introduction to Mathematical Logic includes: propositional logic first-order logic first-order number theory and the incompleteness and undecidability theorems of Gödel, Rosser, Church, and Tarski axiomatic set theory theory of computability The study of mathematical logic, axiomatic set theory, and computability theory provides an understanding of the fundamental assumptions and proof techniques that form basis of mathematics. Logic and computability theory have also become indispensable tools in theoretical computer science, including artificial intelligence. Introduction to Mathematical Logic covers these topics in a clear, reader-friendly style that will be valued by anyone working in computer science as well as lecturers and researchers in mathematics, philosophy, and related fields.

A Course in Model Theory

An Introduction to Contemporary Mathematical Logic

Author: Bruno Poizat

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 443

View: 448

Translated from the French, this book is an introduction to first-order model theory. Starting from scratch, it quickly reaches the essentials, namely, the back-and-forth method and compactness, which are illustrated with examples taken from algebra. It also introduces logic via the study of the models of arithmetic, and it gives complete but accessible exposition of stability theory.