A Course in Point Set Topology

Author: John B. Conway

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 142

View: 926

This textbook in point set topology is aimed at an upper-undergraduate audience. Its gentle pace will be useful to students who are still learning to write proofs. Prerequisites include calculus and at least one semester of analysis, where the student has been properly exposed to the ideas of basic set theory such as subsets, unions, intersections, and functions, as well as convergence and other topological notions in the real line. Appendices are included to bridge the gap between this new material and material found in an analysis course. Metric spaces are one of the more prevalent topological spaces used in other areas and are therefore introduced in the first chapter and emphasized throughout the text. This also conforms to the approach of the book to start with the particular and work toward the more general. Chapter 2 defines and develops abstract topological spaces, with metric spaces as the source of inspiration, and with a focus on Hausdorff spaces. The final chapter concentrates on continuous real-valued functions, culminating in a development of paracompact spaces.

Lecture Notes on Elementary Topology and Geometry

Author: I.M. Singer

Publisher: Springer

ISBN:

Category: Mathematics

Page: 232

View: 777

At the present time, the average undergraduate mathematics major finds mathematics heavily compartmentalized. After the calculus, he takes a course in analysis and a course in algebra. Depending upon his interests (or those of his department), he takes courses in special topics. Ifhe is exposed to topology, it is usually straightforward point set topology; if he is exposed to geom etry, it is usually classical differential geometry. The exciting revelations that there is some unity in mathematics, that fields overlap, that techniques of one field have applications in another, are denied the undergraduate. He must wait until he is well into graduate work to see interconnections, presumably because earlier he doesn't know enough. These notes are an attempt to break up this compartmentalization, at least in topology-geometry. What the student has learned in algebra and advanced calculus are used to prove some fairly deep results relating geometry, topol ogy, and group theory. (De Rham's theorem, the Gauss-Bonnet theorem for surfaces, the functorial relation of fundamental group to covering space, and surfaces of constant curvature as homogeneous spaces are the most note worthy examples.) In the first two chapters the bare essentials of elementary point set topology are set forth with some hint ofthe subject's application to functional analysis.

Topology of Surfaces

Author: L.Christine Kinsey

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 281

View: 576

" . . . that famous pedagogical method whereby one begins with the general and proceeds to the particular only after the student is too confused to understand even that anymore. " Michael Spivak This text was written as an antidote to topology courses such as Spivak It is meant to provide the student with an experience in geomet describes. ric topology. Traditionally, the only topology an undergraduate might see is point-set topology at a fairly abstract level. The next course the average stu dent would take would be a graduate course in algebraic topology, and such courses are commonly very homological in nature, providing quick access to current research, but not developing any intuition or geometric sense. I have tried in this text to provide the undergraduate with a pragmatic introduction to the field, including a sampling from point-set, geometric, and algebraic topology, and trying not to include anything that the student cannot immediately experience. The exercises are to be considered as an in tegral part of the text and, ideally, should be addressed when they are met, rather than at the end of a block of material. Many of them are quite easy and are intended to give the student practice working with the definitions and digesting the current topic before proceeding. The appendix provides a brief survey of the group theory needed.

A First Course in Topology

An Introduction to Mathematical Thinking

Author: Robert A Conover

Publisher: Courier Corporation

ISBN:

Category: Mathematics

Page: 272

View: 373

Students must prove all of the theorems in this undergraduate-level text, which focuses on point-set topology and emphasizes continuity. The final chapter explores homotopy and the fundamental group. 1975 edition.

Tensor-Valued Random Fields for Continuum Physics

Author: Anatoliy Malyarenko

Publisher: Cambridge University Press

ISBN:

Category: Science

Page: 310

View: 965

Presents a complete description of homogenous and isotropic tensor-valued random fields, including the problems of continuum physics, mathematical tools and applications.

Elements of Point Set Topology

Author: John D. Baum

Publisher: Courier Corporation

ISBN:

Category: Mathematics

Page: 150

View: 322

Topology continues to be a topic of prime importance in contemporary mathematics, but until the publication of this book there were few if any introductions to topology for undergraduates. This book remedied that need by offering a carefully thought-out, graduated approach to point set topology at the undergraduate level. To make the book as accessible as possible, the author approaches topology from a geometric and axiomatic standpoint; geometric, because most students come to the subject with a good deal of geometry behind them, enabling them to use their geometric intuition; axiomatic, because it parallels the student's experience with modern algebra, and keeps the book in harmony with current trends in mathematics. After a discussion of such preliminary topics as the algebra of sets, Euler-Venn diagrams and infinite sets, the author takes up basic definitions and theorems regarding topological spaces (Chapter 1). The second chapter deals with continuous functions (mappings) and homeomorphisms, followed by two chapters on special types of topological spaces (varieties of compactness and varieties of connectedness). Chapter 5 covers metric spaces. Since basic point set topology serves as a foundation not only for functional analysis but also for more advanced work in point set topology and algebraic topology, the author has included topics aimed at students with interests other than analysis. Moreover, Dr. Baum has supplied quite detailed proofs in the beginning to help students approaching this type of axiomatic mathematics for the first time. Similarly, in the first part of the book problems are elementary, but they become progressively more difficult toward the end of the book. References have been supplied to suggest further reading to the interested student.

Topological Spaces

From Distance to Neighborhood

Author: Gerard Buskes

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 313

View: 791

gentle introduction to the subject, leading the reader to understand the notion of what is important in topology with regard to geometry. Divided into three sections - The line and the plane, Metric spaces and Topological spaces -, the book eases the move into higher levels of abstraction. Students are thereby informally assisted in learning new ideas while remaining on familiar territory. The authors do not assume previous knowledge of axiomatic approach or set theory. Similarly, they have restricted the mathematical vocabulary in the book so as to avoid overwhelming the reader, and the concept of convergence is employed to allow students to focus on a central theme while moving to a natural understanding of the notion of topology. The pace of the book is relaxed with gradual acceleration: the first nine sections form a balanced course in metric spaces for undergraduates while also containing ample material for a two-semester graduate course. Finally, the book illustrates the many connections between topology and other subjects, such as analysis and set theory, via the inclusion of "Extras" at the end of each chapter presenting a brief foray outside topology.

A First Course in Topology

Continuity and Dimension

Author: John McCleary

Publisher: American Mathematical Soc.

ISBN:

Category: Mathematics

Page: 211

View: 996

How many dimensions does our universe require for a comprehensive physical description? In 1905, Poincare argued philosophically about the necessity of the three familiar dimensions, while recent research is based on 11 dimensions or even 23 dimensions. The notion of dimension itself presented a basic problem to the pioneers of topology. Cantor asked if dimension was a topological feature of Euclidean space. To answer this question, some important topological ideas were introduced by Brouwer, giving shape to a subject whose development dominated the twentieth century. The basic notions in topology are varied and a comprehensive grounding in point-set topology, the definition and use of the fundamental group, and the beginnings of homology theory requires considerable time.The goal of this book is a focused introduction through these classical topics, aiming throughout at the classical result of the Invariance of Dimension. This text is based on the author's course given at Vassar College and is intended for advanced undergraduate students. It is suitable for a semester-long course on topology for students who have studied real analysis and linear algebra. It is also a good choice for a capstone course, senior seminar, or independent study.

A Course in Multivariable Calculus and Analysis

Author: Sudhir R. Ghorpade

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 475

View: 685

This self-contained textbook gives a thorough exposition of multivariable calculus. The emphasis is on correlating general concepts and results of multivariable calculus with their counterparts in one-variable calculus. Further, the book includes genuine analogues of basic results in one-variable calculus, such as the mean value theorem and the fundamental theorem of calculus. This book is distinguished from others on the subject: it examines topics not typically covered, such as monotonicity, bimonotonicity, and convexity, together with their relation to partial differentiation, cubature rules for approximate evaluation of double integrals, and conditional as well as unconditional convergence of double series and improper double integrals. Each chapter contains detailed proofs of relevant results, along with numerous examples and a wide collection of exercises of varying degrees of difficulty, making the book useful to undergraduate and graduate students alike.

Topology

Author: Sheldon W. Davis

Publisher: McGraw-Hill Science, Engineering & Mathematics

ISBN:

Category: Mathematics

Page: 293

View: 524

Designed for juniors and seniors, this one-semester laboratory manual is based on mathematical statistics. This new edition provides a wide range of topics for investigation. Author George Cox begins with exercises covering library research, designing an ecological study, and other introductory concepts. He then proceeds to an examination of specific types of measurement and an analysis of various aspects of ecology. Many of these laboratories are tied to current, commercially-available computer programs and software packages.