A Course in Differential Geometry

Author: Thierry Aubin

Publisher: American Mathematical Soc.

ISBN: 9780821872147

Category: Mathematics

Page: 184

View: 1106

This textbook for second-year graduate students is an introduction to differential geometry with principal emphasis on Riemannian geometry. The author is well-known for his significant contributions to the field of geometry and PDEs - particularly for his work on the Yamabe problem - and for his expository accounts on the subject. The text contains many problems and solutions, permitting the reader to apply the theorems and to see concrete developments of the abstract theory.

Manifolds and Differential Geometry

Author: Jeffrey Marc Lee

Publisher: American Mathematical Soc.

ISBN: 0821848151

Category: Mathematics

Page: 671

View: 2903

Differential geometry began as the study of curves and surfaces using the methods of calculus. In time, the notions of curve and surface were generalized along with associated notions such as length, volume, and curvature. At the same time the topic has become closely allied with developments in topology. The basic object is a smooth manifold, to which some extra structure has been attached, such as a Riemannian metric, a symplectic form, a distinguished group of symmetries, or a connection on the tangent bundle. This book is a graduate-level introduction to the tools and structures of modern differential geometry. Included are the topics usually found in a course on differentiable manifolds, such as vector bundles, tensors, differential forms, de Rham cohomology, the Frobenius theorem and basic Lie group theory. The book also contains material on the general theory of connections on vector bundles and an in-depth chapter on semi-Riemannian geometry that covers basic material about Riemannian manifolds and Lorentz manifolds. An unusual feature of the book is the inclusion of an early chapter on the differential geometry of hyper-surfaces in Euclidean space. There is also a section that derives the exterior calculus version of Maxwell's equations. The first chapters of the book are suitable for a one-semester course on manifolds. There is more than enough material for a year-long course on manifolds and geometry.

A short course in differential geometry and topology

Author: A. T. Fomenko,Aleksandr Sergeevich Mishchenko

Publisher: N.A

ISBN: 9781904868323

Category: Mathematics

Page: 273

View: 2062

"This volume is intended for graduate and research students in mathematics and physics. It covers general topology, nonlinear co-ordinate systems, theory of smooth manifolds, theory of curves and surfaces, transformation groups, tensor analysis and Riemannian geometry, theory of integration and homologies, fundamental groups and variational principles in Riemannian geometry. The text is presented in a form that is easily accessible to students and is supplemented by a large number of examples, problems, drawings and appendices."--Cambridge Scientific Publishers website, viewed 2 September 2009.

Topics in Differential Geometry

Author: Peter W. Michor

Publisher: American Mathematical Soc.

ISBN: 0821820036

Category: Mathematics

Page: 494

View: 8512

This book treats the fundamentals of differential geometry: manifolds, flows, Lie groups and their actions, invariant theory, differential forms and de Rham cohomology, bundles and connections, Riemann manifolds, isometric actions, and symplectic and Poisson geometry. The layout of the material stresses naturality and functoriality from the beginning and is as coordinate-free as possible. Coordinate formulas are always derived as extra information. Some attractive unusual aspects of this book are as follows: Initial submanifolds and the Frobenius theorem for distributions of nonconstant rank (the Stefan-Sussman theory) are discussed. Lie groups and their actions are treated early on, including the slice theorem and invariant theory. De Rham cohomology includes that of compact Lie groups, leading to the study of (nonabelian) extensions of Lie algebras and Lie groups. The Frolicher-Nijenhuis bracket for tangent bundle valued differential forms is used to express any kind of curvature and second Bianchi identity, even for fiber bundles (without structure groups). Riemann geometry starts with a careful treatment of connections to geodesic structures to sprays to connectors and back to connections, going via the second and third tangent bundles. The Jacobi flow on the second tangent bundle is a new aspect coming from this point of view. Symplectic and Poisson geometry emphasizes group actions, momentum mappings, and reductions. This book gives the careful reader working knowledge in a wide range of topics of modern coordinate-free differential geometry in not too many pages. A prerequisite for using this book is a good knowledge of undergraduate analysis and linear algebra.

Curves and Surfaces

Author: Sebastián Montiel,Antonio Ros,Donald G. Babbitt

Publisher: American Mathematical Soc.

ISBN: 0821847635

Category: Mathematics

Page: 376

View: 9153

This introductory textbook puts forth a clear and focused point of view on the differential geometry of curves and surfaces. Following the modern point of view on differential geometry, the book emphasizes the global aspects of the subject. The excellent collection of examples and exercises (with hints) will help students in learning the material. Advanced undergraduates and graduate students will find this a nice entry point to differential geometry. In order to study the global properties of curves and surfaces, it is necessary to have more sophisticated tools than are usually found in textbooks on the topic. In particular, students must have a firm grasp on certain topological theories. Indeed, this monograph treats the Gauss-Bonnet theorem and discusses the Euler characteristic. The authors also cover Alexandrov's theorem on embedded compact surfaces in $\mathbb{R}^3$ with constant mean curvature. The last chapter addresses the global geometry of curves, including periodic space curves and the four-vertices theorem for plane curves that are not necessarily convex. Besides being an introduction to the lively subject of curves and surfaces, this book can also be used as an entry to a wider study of differential geometry. It is suitable as the text for a first-year graduate course or an advanced undergraduate course.

Differential Geometry of Curves and Surfaces

Author: Kristopher Tapp

Publisher: Springer

ISBN: 3319397990

Category: Mathematics

Page: 366

View: 9097

This is a textbook on differential geometry well-suited to a variety of courses on this topic. For readers seeking an elementary text, the prerequisites are minimal and include plenty of examples and intermediate steps within proofs, while providing an invitation to more excursive applications and advanced topics. For readers bound for graduate school in math or physics, this is a clear, concise, rigorous development of the topic including the deep global theorems. For the benefit of all readers, the author employs various techniques to render the difficult abstract ideas herein more understandable and engaging. Over 300 color illustrations bring the mathematics to life, instantly clarifying concepts in ways that grayscale could not. Green-boxed definitions and purple-boxed theorems help to visually organize the mathematical content. Color is even used within the text to highlight logical relationships. Applications abound! The study of conformal and equiareal functions is grounded in its application to cartography. Evolutes, involutes and cycloids are introduced through Christiaan Huygens' fascinating story: in attempting to solve the famous longitude problem with a mathematically-improved pendulum clock, he invented mathematics that would later be applied to optics and gears. Clairaut’s Theorem is presented as a conservation law for angular momentum. Green’s Theorem makes possible a drafting tool called a planimeter. Foucault’s Pendulum helps one visualize a parallel vector field along a latitude of the earth. Even better, a south-pointing chariot helps one visualize a parallel vector field along any curve in any surface. In truth, the most profound application of differential geometry is to modern physics, which is beyond the scope of this book. The GPS in any car wouldn’t work without general relativity, formalized through the language of differential geometry. Throughout this book, applications, metaphors and visualizations are tools that motivate and clarify the rigorous mathematical content, but never replace it.

A Course in Modern Mathematical Physics

Groups, Hilbert Space and Differential Geometry

Author: Peter Szekeres

Publisher: Cambridge University Press

ISBN: 1139455834

Category: Science

Page: N.A

View: 5118

This book, first published in 2004, provides an introduction to the major mathematical structures used in physics today. It covers the concepts and techniques needed for topics such as group theory, Lie algebras, topology, Hilbert space and differential geometry. Important theories of physics such as classical and quantum mechanics, thermodynamics, and special and general relativity are also developed in detail, and presented in the appropriate mathematical language. The book is suitable for advanced undergraduate and beginning graduate students in mathematical and theoretical physics, as well as applied mathematics. It includes numerous exercises and worked examples, to test the reader's understanding of the various concepts, as well as extending the themes covered in the main text. The only prerequisites are elementary calculus and linear algebra. No prior knowledge of group theory, abstract vector spaces or topology is required.

Algebraic Topology Via Differential Geometry

Author: M. Karoubi,C. Leruste

Publisher: Cambridge University Press

ISBN: 9780521317146

Category: Mathematics

Page: 363

View: 6036

In this volume the authors seek to illustrate how methods of differential geometry find application in the study of the topology of differential manifolds. Prerequisites are few since the authors take pains to set out the theory of differential forms and the algebra required. The reader is introduced to De Rham cohomology, and explicit and detailed calculations are present as examples. Topics covered include Mayer-Vietoris exact sequences, relative cohomology, Pioncare duality and Lefschetz's theorem. This book will be suitable for graduate students taking courses in algebraic topology and in differential topology. Mathematicians studying relativity and mathematical physics will find this an invaluable introduction to the techniques of differential geometry.

Introduction to Geometry and Topology

Author: Werner Ballmann

Publisher: Birkhäuser

ISBN: 3034809832

Category: Mathematics

Page: 169

View: 3299

This book provides an introduction to topology, differential topology, and differential geometry. It is based on manuscripts refined through use in a variety of lecture courses. The first chapter covers elementary results and concepts from point-set topology. An exception is the Jordan Curve Theorem, which is proved for polygonal paths and is intended to give students a first glimpse into the nature of deeper topological problems. The second chapter of the book introduces manifolds and Lie groups, and examines a wide assortment of examples. Further discussion explores tangent bundles, vector bundles, differentials, vector fields, and Lie brackets of vector fields. This discussion is deepened and expanded in the third chapter, which introduces the de Rham cohomology and the oriented integral and gives proofs of the Brouwer Fixed-Point Theorem, the Jordan-Brouwer Separation Theorem, and Stokes's integral formula. The fourth and final chapter is devoted to the fundamentals of differential geometry and traces the development of ideas from curves to submanifolds of Euclidean spaces. Along the way, the book discusses connections and curvature--the central concepts of differential geometry. The discussion culminates with the Gauß equations and the version of Gauß's theorema egregium for submanifolds of arbitrary dimension and codimension. This book is primarily aimed at advanced undergraduates in mathematics and physics and is intended as the template for a one- or two-semester bachelor's course.

Geometric Continuum Mechanics and Induced Beam Theories

Author: Simon R. Eugster

Publisher: Springer

ISBN: 3319164953

Category: Technology & Engineering

Page: 146

View: 3774

This research monograph discusses novel approaches to geometric continuum mechanics and introduces beams as constraint continuous bodies. In the coordinate free and metric independent geometric formulation of continuum mechanics as well as for beam theories, the principle of virtual work serves as the fundamental principle of mechanics. Based on the perception of analytical mechanics that forces of a mechanical system are defined as dual quantities to the kinematical description, the virtual work approach is a systematic way to treat arbitrary mechanical systems. Whereas this methodology is very convenient to formulate induced beam theories, it is essential in geometric continuum mechanics when the assumptions on the physical space are relaxed and the space is modeled as a smooth manifold. The book addresses researcher and graduate students in engineering and mathematics interested in recent developments of a geometric formulation of continuum mechanics and a hierarchical development of induced beam theories.

Differential Geometry and Lie Groups for Physicists

Author: Marián Fecko

Publisher: Cambridge University Press

ISBN: 1139458035

Category: Science

Page: N.A

View: 1630

Differential geometry plays an increasingly important role in modern theoretical physics and applied mathematics. This textbook gives an introduction to geometrical topics useful in theoretical physics and applied mathematics, covering: manifolds, tensor fields, differential forms, connections, symplectic geometry, actions of Lie groups, bundles, spinors, and so on. Written in an informal style, the author places a strong emphasis on developing the understanding of the general theory through more than 1000 simple exercises, with complete solutions or detailed hints. The book will prepare readers for studying modern treatments of Lagrangian and Hamiltonian mechanics, electromagnetism, gauge fields, relativity and gravitation. Differential Geometry and Lie Groups for Physicists is well suited for courses in physics, mathematics and engineering for advanced undergraduate or graduate students, and can also be used for active self-study. The required mathematical background knowledge does not go beyond the level of standard introductory undergraduate mathematics courses.

A Course in Metric Geometry

Author: Dmitri Burago,I͡Uriĭ Dmitrievich Burago,Sergeĭ Ivanov

Publisher: American Mathematical Soc.

ISBN: 0821821296

Category: Mathematics

Page: 415

View: 9762

``Metric geometry'' is an approach to geometry based on the notion of length on a topological space. This approach experienced a very fast development in the last few decades and penetrated into many other mathematical disciplines, such as group theory, dynamical systems, and partial differential equations. The objective of this graduate textbook is twofold: to give a detailed exposition of basic notions and techniques used in the theory of length spaces, and, more generally, to offer an elementary introduction into a broad variety of geometrical topics related to the notion of distance, including Riemannian and Carnot-Caratheodory metrics, the hyperbolic plane, distance-volume inequalities, asymptotic geometry (large scale, coarse), Gromov hyperbolic spaces, convergence of metric spaces, and Alexandrov spaces (non-positively and non-negatively curved spaces). The authors tend to work with ``easy-to-touch'' mathematical objects using ``easy-to-visualize'' methods. The authors set a challenging goal of making the core parts of the book accessible to first-year graduate students. Most new concepts and methods are introduced and illustrated using simplest cases and avoiding technicalities. The book contains many exercises, which form a vital part of the exposition.

Real and Abstract Analysis

A modern treatment of the theory of functions of a real variable

Author: Edwin Hewitt,Karl Stromberg

Publisher: Springer-Verlag

ISBN: 3662297949

Category: Mathematics

Page: 476

View: 8247

Cartan for Beginners

Differential Geometry Via Moving Frames and Exterior Differential Systems

Author: Thomas Andrew Ivey,J. M. Landsberg

Publisher: American Mathematical Soc.

ISBN: 0821833758

Category: Mathematics

Page: 378

View: 1556

This book is an introduction to Cartan's approach to differential geometry. Two central methods in Cartan's geometry are the theory of exterior differential systems and the method of moving frames. This book presents thorough and modern treatments of both subjects, including their applications to both classic and contemporary problems. It begins with the classical geometry of surfaces and basic Riemannian geometry in the language of moving frames, along with an elementary introduction to exterior differential systems. Key concepts are developed incrementally with motivating examples leading to definitions, theorems, and proofs. Once the basics of the methods are established, the authors develop applications and advanced topics.One notable application is to complex algebraic geometry, where they expand and update important results from projective differential geometry. The book features an introduction to $G$-structures and a treatment of the theory of connections. The Cartan machinery is also applied to obtain explicit solutions of PDEs via Darboux's method, the method of characteristics, and Cartan's method of equivalence. This text is suitable for a one-year graduate course in differential geometry, and parts of it can be used for a one-semester course. It has numerous exercises and examples throughout. It will also be useful to experts in areas such as PDEs and algebraic geometry who want to learn how moving frames and exterior differential systems apply to their fields.

Global Analysis

Differential Forms in Analysis, Geometry, and Physics

Author: Ilka Agricola,Thomas Friedrich

Publisher: American Mathematical Soc.

ISBN: 0821829513

Category: Mathematics

Page: 343

View: 6452

This book introduces the reader to the world of differential forms and their uses in geometry, analysis, and mathematical physics. It begins with a few basic topics, partly as review, then moves on to vector analysis on manifolds and the study of curves and surfaces in $3$-space. Lie groups and homogeneous spaces are discussed, providing the appropriate framework for introducing symmetry in both mathematical and physical contexts. The final third of the book applies the mathematical ideas to important areas of physics: Hamiltonian mechanics, statistical mechanics, and electrodynamics. There are many classroom-tested exercises and examples with excellent figures throughout. The book is ideal as a text for a first course in differential geometry, suitable for advanced undergraduates or graduate students in mathematics or physics.

A Course in Minimal Surfaces

Author: Tobias H. Colding,William P. Minicozzi

Publisher: American Mathematical Soc.

ISBN: 0821853236

Category: Mathematics

Page: 313

View: 6415

Minimal surfaces date back to Euler and Lagrange and the beginning of the calculus of variations. Many of the techniques developed have played key roles in geometry and partial differential equations. Examples include monotonicity and tangent cone analysis originating in the regularity theory for minimal surfaces, estimates for nonlinear equations based on the maximum principle arising in Bernstein's classical work, and even Lebesgue's definition of the integral that he developed in his thesis on the Plateau problem for minimal surfaces. This book starts with the classical theory of minimal surfaces and ends up with current research topics. Of the various ways of approaching minimal surfaces (from complex analysis, PDE, or geometric measure theory), the authors have chosen to focus on the PDE aspects of the theory. The book also contains some of the applications of minimal surfaces to other fields including low dimensional topology, general relativity, and materials science. The only prerequisites needed for this book are a basic knowledge of Riemannian geometry and some familiarity with the maximum principle.

A New Approach to Differential Geometry using Clifford's Geometric Algebra

Author: John Snygg

Publisher: Springer Science & Business Media

ISBN: 0817682821

Category: Mathematics

Page: 465

View: 2448

Differential geometry is the study of the curvature and calculus of curves and surfaces. A New Approach to Differential Geometry using Clifford's Geometric Algebra simplifies the discussion to an accessible level of differential geometry by introducing Clifford algebra. This presentation is relevant because Clifford algebra is an effective tool for dealing with the rotations intrinsic to the study of curved space. Complete with chapter-by-chapter exercises, an overview of general relativity, and brief biographies of historical figures, this comprehensive textbook presents a valuable introduction to differential geometry. It will serve as a useful resource for upper-level undergraduates, beginning-level graduate students, and researchers in the algebra and physics communities.

Nonlinear Partial Differential Equations in Differential Geometry

Author: Robert Hardt

Publisher: American Mathematical Soc.

ISBN: 9780821804315

Category: Mathematics

Page: 339

View: 1135

What distinguishes differential geometry in the last half of the twentieth century from its earlier history is the use of nonlinear partial differential equations in the study of curved manifolds, submanifolds, mapping problems, and function theory on manifolds, among other topics. The differential equations appear as tools and as objects of study, with analytic and geometric advances fueling each other in the current explosion of progress in this area of geometry in the last twenty years. This book contains lecture notes of minicourses at the Regional Geometry Institute at Park City, Utah, in July 1992. Presented here are surveys of breaking developments in a number of areas of nonlinear partial differential equations in differential geometry. The authors of the articles are not only excellent expositors, but are also leaders in this field of research. All of the articles provide in-depth treatment of the topics and require few prerequisites and less background than current research articles.